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Preface

We have made substantial changes in this edition of Introduction to Mathematical
Statistics. Some of these changes help students appreciate the connection between
statistical theory and statistical practice while other changes enhance the develop-
ment and discussion of the statistical theory presented in this book.

Many of the changes in this edition reflect comments made by our readers. One
of these comments concerned the small number of real data sets in the previous
editions. In this edition, we have included more real data sets, using them to
illustrate statistical methods or to compare methods. Further, we have made these
data sets accessible to students by including them in the free R package hmcpkg.
They can also be individually downloaded in an R session at the url listed on page 12.
In general, the R code for the analyses on these data sets is given in the text.

We have also expanded the use of the statistical software R. We selected R
because it is a powerful statistical language that is free and runs on all three main
platforms (Windows, Mac, and Linux). Instructors, though, can select another
statistical package. We have also expanded our use of R functions to compute
analyses and simulation studies, including several games. We have kept the level of
coding for these functions straightforward. Our goal is to show students that with
a few simple lines of code they can perform significant computations. Appendix B
contains a brief R primer, which suffices for the understanding of the R used in the
text. As with the data sets, these R functions can be sourced individually at the
cited url; however, they are also included in the package hmcpkg.

We have supplemented the mathematical review material in Appendix A, placing
it in the document Mathematical Primer for Introduction to Mathematical Statistics.
It is freely available for students to download at the listed url. Besides sequences,
this supplement reviews the topics of infinite series, differentiation, and integra-
tion (univariate and bivariate). We have also expanded the discussion of iterated
integrals in the text. We have added figures to clarify discussion.

We have retained the order of elementary statistical inferences (Chapter 4) and
asymptotic theory (Chapter 5). In Chapters 5 and 6, we have written brief reviews
of the material in Chapter 4, so that Chapters 4 and 5 are essentially independent
of one another and, hence, can be interchanged. In Chapter 3, we now begin the
section on the multivariate normal distribution with a subsection on the bivariate
normal distribution. Several important topics have been added. This includes
Tukey’s multiple comparison procedure in Chapter 9 and confidence intervals for
the correlation coefficients found in Chapters 9 and 10. Chapter 7 now contains a

11



12 Preface

discussion on standard errors for estimates obtained by bootstrapping the sample.
Several topics that were discussed in the Exercises are now discussed in the text.
Examples include quantiles, Section 1.7.1, and hazard functions, Section 3.3. In
general, we have made more use of subsections to break up some of the discussion.
Also, several more sections are now indicated by * as being optional.

Content and Course Planning

Chapters 1 and 2 develop probability models for univariate and multivariate vari-
ables while Chapter 3 discusses many of the most widely used probability models.
Chapter 4 discusses statistical theory for much of the inference found in a stan-
dard statistical methods course. Chapter 5 presents asymptotic theory, concluding
with the Central Limit Theorem. Chapter 6 provides a complete inference (esti-
mation and testing) based on maximum likelihood theory. The EM algorithm is
also discussed. Chapters 7-8 contain optimal estimation procedures and tests of
statistical hypotheses. The final three chapters provide theory for three important
topics in statistics. Chapter 9 contains inference for normal theory methods for
basic analysis of variance, univariate regression, and correlation models. Chapter
10 presents nonparametric methods (estimation and testing) for location and uni-
variate regression models. It also includes discussion on the robust concepts of
efficiency, influence, and breakdown. Chapter 11 offers an introduction to Bayesian
methods. This includes traditional Bayesian procedures as well as Markov Chain
Monte Carlo techniques.

Several courses can be designed using our book. The basic two-semester course
in mathematical statistics covers most of the material in Chapters 1-8 with topics
selected from the remaining chapters. For such a course, the instructor would have
the option of interchanging the order of Chapters 4 and 5, thus beginning the second
semester with an introduction to statistical theory (Chapter 4). A one-semester
course could consist of Chapters 1-4 with a selection of topics from Chapter 5.
Under this option, the student sees much of the statistical theory for the methods
discussed in a non-theoretical course in methods. On the other hand, as with the
two-semester sequence, after covering Chapters 1-3, the instructor can elect to cover
Chapter 5 and finish the course with a selection of topics from Chapter 4.

The data sets and R functions used in this book and the R package hmcpkg can
be downloaded from this title’s page at the site:
www.pearsonglobaleditions.com
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Chapter 1

Probability and Distributions

1.1 Introduction

In this section, we intuitively discuss the concepts of a probability model which we
formalize in Secton 1.3 Many kinds of investigations may be characterized in part
by the fact that repeated experimentation, under essentially the same conditions,
is more or less standard procedure. For instance, in medical research, interest may
center on the effect of a drug that is to be administered; or an economist may be
concerned with the prices of three specified commodities at various time intervals; or
an agronomist may wish to study the effect that a chemical fertilizer has on the yield
of a cereal grain. The only way in which an investigator can elicit information about
any such phenomenon is to perform the experiment. Each experiment terminates
with an outcome. But it is characteristic of these experiments that the outcome
cannot be predicted with certainty prior to the experiment.

Suppose that we have such an experiment, but the experiment is of such a nature
that a collection of every possible outcome can be described prior to its performance.
If this kind of experiment can be repeated under the same conditions, it is called
a random experiment, and the collection of every possible outcome is called the
experimental space or the sample space. We denote the sample space by C.

Example 1.1.1. In the toss of a coin, let the outcome tails be denoted by 7" and let
the outcome heads be denoted by H. If we assume that the coin may be repeatedly
tossed under the same conditions, then the toss of this coin is an example of a
random experiment in which the outcome is one of the two symbols T or H; that
is, the sample space is the collection of these two symbols. For this example, then,
C={H,T}. =

Example 1.1.2. In the cast of one red die and one white die, let the outcome be the
ordered pair (number of spots up on the red die, number of spots up on the white
die). If we assume that these two dice may be repeatedly cast under the same con-
ditions, then the cast of this pair of dice is a random experiment. The sample space
consists of the 36 ordered pairs: C = {(1,1),...,(1,6),(2,1),...,(2,6),...,(6,6)}.
|

15



16 Probability and Distributions

We generally use small Roman letters for the elements of C such as a,b, or
c. Often for an experiment, we are interested in the chances of certain subsets of
elements of the sample space occurring. Subsets of C are often called events and are
generally denoted by capitol Roman letters such as A, B,or C. If the experiment
results in an element in an event A, we say the event A has occurred. We are
interested in the chances that an event occurs. For instance, in Example 1.1.1 we
may be interested in the chances of getting heads; i.e., the chances of the event
A = {H} occurring. In the second example, we may be interested in the occurrence
of the sum of the upfaces of the dice being “7” or “11;” that is, in the occurrence of
the event A = {(1,6),(2,5),(3,4), (4,3), (5,2), (6,1), (5,6), (6,5)}.

Now conceive of our having made N repeated performances of the random ex-
periment. Then we can count the number f of times (the frequency) that the
event A actually occurred throughout the N performances. The ratio f/N is called
the relative frequency of the event A in these N experiments. A relative fre-
quency is usually quite erratic for small values of IV, as you can discover by tossing
a coin. But as N increases, experience indicates that we associate with the event A
a number, say p, that is equal or approximately equal to that number about which
the relative frequency seems to stabilize. If we do this, then the number p can be
interpreted as that number which, in future performances of the experiment, the
relative frequency of the event A will either equal or approximate. Thus, although
we cannot predict the outcome of a random experiment, we can, for a large value
of N, predict approximately the relative frequency with which the outcome will be
in A. The number p associated with the event A is given various names. Some-
times it is called the probability that the outcome of the random experiment is in
A; sometimes it is called the probability of the event A; and sometimes it is called
the probability measure of A. The context usually suggests an appropriate choice of
terminology.

Example 1.1.3. Let C denote the sample space of Example 1.1.2 and let B be
the collection of every ordered pair of C for which the sum of the pair is equal to
seven. Thus B = {(1,6),(2,5),(3,4),(4,3),(5,2)(6,1)}. Suppose that the dice are
cast N = 400 times and let f denote the frequency of a sum of seven. Suppose that

400 casts result in f = 60. Then the relative frequency with which the outcome
was in Bis f/N = % = 0.15. Thus we might associate with B a number p that is

close to 0.15, and p would be called the probability of the event B. m

Remark 1.1.1. The preceding interpretation of probability is sometimes referred
to as the relative frequency approach, and it obviously depends upon the fact that an
experiment can be repeated under essentially identical conditions. However, many
persons extend probability to other situations by treating it as a rational measure

of belief. For example, the statement p = % for an event A would mean to them
that their personal or subjective probability of the event A is equal to % Hence,
if they are not opposed to gambling, this could be interpreted as a willingness on
their part to bet on the outcome of A so that the two possible payoffs are in the
ratio p/(1 —p) = %/% = % Moreover, if they truly believe that p = % is correct,

they would be willing to accept either side of the bet: (a) win 3 units if A occurs
and lose 2 if it does not occur, or (b) win 2 units if A does not occur and lose 3 if
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it does. However, since the mathematical properties of probability given in Section
1.3 are consistent with either of these interpretations, the subsequent mathematical
development does not depend upon which approach is used. m

The primary purpose of having a mathematical theory of statistics is to provide
mathematical models for random experiments. Once a model for such an experi-
ment has been provided and the theory worked out in detail, the statistician may,
within this framework, make inferences (that is, draw conclusions) about the ran-
dom experiment. The construction of such a model requires a theory of probability.
One of the more logically satisfying theories of probability is that based on the
concepts of sets and functions of sets. These concepts are introduced in Section 1.2.

1.2 Sets

The concept of a set or a collection of objects is usually left undefined. However,
a particular set can be described so that there is no misunderstanding as to what
collection of objects is under consideration. For example, the set of the first 10
positive integers is sufficiently well described to make clear that the numbers % and
14 are not in the set, while the number 3 is in the set. If an object belongs to a
set, it is said to be an element of the set. For example, if C' denotes the set of real
numbers z for which 0 < z < 1, then % is an element of the set C. The fact that
% is an element of the set C' is indicated by writing % € C. More generally, c € C
means that ¢ is an element of the set C.

The sets that concern us are frequently sets of numbers. However, the language
of sets of points proves somewhat more convenient than that of sets of numbers.
Accordingly, we briefly indicate how we use this terminology. In analytic geometry
considerable emphasis is placed on the fact that to each point on a line (on which
an origin and a unit point have been selected) there corresponds one and only one
number, say x; and that to each number x there corresponds one and only one point
on the line. This one-to-one correspondence between the numbers and points on a
line enables us to speak, without misunderstanding, of the “point x” instead of the
“number x.” Furthermore, with a plane rectangular coordinate system and with z
and y numbers, to each symbol (z,y) there corresponds one and only one point in the
plane; and to each point in the plane there corresponds but one such symbol. Here
again, we may speak of the “point (z,y),” meaning the “ordered number pair z and
y.” This convenient language can be used when we have a rectangular coordinate
system in a space of three or more dimensions. Thus the “point (x1,xa,...,zy)”
means the numbers x1, o, ..., z, in the order stated. Accordingly, in describing our
sets, we frequently speak of a set of points (a set whose elements are points), being
careful, of course, to describe the set so as to avoid any ambiguity. The notation
C ={z:0<a <1} isread “C is the one-dimensional set of points = for which
0 <z <1 Similarly, C = {(z,y) : 0 <2z < 1,0 <y < 1} can be read “C is the
two-dimensional set of points (z,y) that are interior to, or on the boundary of, a
square with opposite vertices at (0,0) and (1,1).”

We say a set C' is countable if C is finite or has as many elements as there are
positive integers. For example, the sets C; = {1,2,...,100} and Cy = {1,3,5,7,...}
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are countable sets. The interval of real numbers (0, 1], though, is not countable.

1.2.1 Review of Set Theory

As in Section 1.1, let C denote the sample space for the experiment. Recall that
events are subsets of C. We use the words event and subset interchangeably in this
section. An elementary algebra of sets will prove quite useful for our purposes. We
now review this algebra below along with illustrative examples. For illustration, we
also make use of Venn diagrams. Consider the collection of Venn diagrams in
Figure 1.2.1. The interior of the rectangle in each plot represents the sample space
C. The shaded region in Panel (a) represents the event A.

Panel (a) Panel (b)
@ B
A
A AcB
Panel (c) Panel (d)
A B A B
AUB ANB

Figure 1.2.1: A series of Venn diagrams. The sample space C is represented by
the interior of the rectangle in each plot. Panel (a) depicts the event A; Panel (b)
depicts A C B; Panel (c) depicts AU B; and Panel (d) depicts AN B.

We first define the complement of an event A.

Definition 1.2.1. The complement of an event A is the set of all elements in C
which are not in A. We denote the complement of A by A°. That is, A°={z € C:

x ¢ A}
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The complement of A is represented by the white space in the Venn diagram in
Panel (a) of Figure 1.2.1.

The empty set is the event with no elements in it. It is denoted by ¢. Note
that C¢ = ¢ and ¢¢ = C. The next definition defines when one event is a subset of
another.

Definition 1.2.2. If each element of a set A is also an element of set B, the set A
is called a subset of the set B. This is indicated by writing A C B. If AC B and
also B C A, the two sets have the same elements, and this is indicated by writing

A=DB.

Panel (b) of Figure 1.2.1 depicts A C B.
The event A or B is defined as follows:

Definition 1.2.3. Let A and B be events. Then the union of A and B is the set
of all elements that are in A or in B or in both A and B. The union of A and B
is denoted by AU B

Panel (c) of Figure 1.2.1 shows AU B.
The event that both A and B occur is defined by,

Definition 1.2.4. Let A and B be events. Then the intersection of A and B is
the set of all elements that are in both A and B. The intersection of A and B is
denoted by AN B

Panel (d) of Figure 1.2.1 illustrates A N B.
Two events are disjoint if they have no elements in common. More formally we
define

Definition 1.2.5. Let A and B be events. Then A and B are disjoint if ANB = ¢

If A and B are disjoint, then we say AU B forms a disjoint union. The next two
examples illustrate these concepts.

Example 1.2.1. Suppose we have a spinner with the numbers 1 through 10 on
it. The experiment is to spin the spinner and record the number spun. Then
C ={1,2,...,10}. Define the events A, B, and C by A = {1,2}, B ={2,3,4}, and
C = {3,4,5,6}, respectively.

A°={3,4,...,10}; AUB={1,2,3,4}; ANB={2}
ANC=¢; BNC={3,4}; BNCCB; BNCcCC
AU(BNC)={1,2}U{3,4} = {1,2,3,4} (1.2.1)
(AUB)N(AUC) ={1,2,3,4} N {1,2,3,4,5,6} = {1,2,3,4} (1.2.2)

The reader should verify these results. m

Example 1.2.2. For this example, suppose the experiment is to select a real number
in the open interval (0,5); hence, the sample space is C = (0,5). Let A = (1,3),
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B =(2,4), and C = [3,4.5).

AUB=(1,4); AnB=(2,3); BNC=][3,4)
AN(BUC)=(1,3)N(2,4.5) = (2,3) (1.2.3)
(ANB)U(ANC)=(2,3)U¢p=(2,3)

A sketch of the real number line between 0 and 5 helps to verify these results. m

Expressions (1.2.1)—(1.2.2) and (1.2.3)—(1.2.4) are illustrations of general dis-
tributive laws. For any sets A, B, and C,

AN(BUC) = (ANB)U(ANCQC)

Au(BNC) = (AUuB)N(AUCQC). (1.2.5)
These follow directly from set theory. To verify each identity, sketch Venn diagrams
of both sides.

The next two identities are collectively known as DeMorgan’s Laws. For any
sets A and B,

(AN B)° AU B¢ (1.2.6
(AuB)¢ = A°nB- (1.2.7)

=

For instance, in Example 1.2.1,
(AUB)® ={1,2,3,4}° = {5,6,...,10} = {3,4,...,10}n{{1,5,6,...,10} = A°NB<;
while, from Example 1.2.2,

(ANB) = (2,3)°=(0,2]U[3,5) =[(0,1] U [3,5)] U[(0,2] U [4,5)] = A°U B°.

As the last expression suggests, it is easy to extend unions and intersections to more

than two sets. If Ay, Ao, ..., A, are any sets, we define
AiUAU---UA, = {z:2€A;, forsomei=1,2,...,n} (1.2.8)
AiNnAsn---nA4, = {z:zecA, foralli=1,2,...,n}. (1.2.9)

We often abbreviative these by U, A; and N}, A;, respectively. Expressions for
countable unions and intersections follow directly; that is, if Ay, As,..., A, ... IS a
sequence of sets then
AfUA U+ = {z:2€A,, forsomen=1,2,...} =U2, A4, (1.2.10)
AiNAsn-- = {z:z€A,, foralln=1,2,...} =N, 4,. (1.2.11)

The next two examples illustrate these ideas.
Example 1.2.3. Suppose C = {1,2,3,...}. If 4, = {1,3,...,2n — 1} and B, =
{n,n+1,...}, forn=1,2,3,..., then
U A, =1{1,3,5,...}; N2, A, ={1}; (1.2.12)
U2, B, =C; N2, B,=¢. ® (1.2.13)
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Example 1.2.4. Suppose C is the interval of real numbers (0,5). Suppose C,, =
(1-n"t,24+nY)and D, =(n"1,3—n"1), forn=1,2,3,.... Then
Us2,Cn =(0,3); Ne,Cp =11,2] (1.2.14)
Us21D, =(0,3); Ne2,D,=(1,2). m (1.2.15)

We occassionally have sequences of sets that are monotone. They are of two
types. We say a sequence of sets {4, } is nondecreasing, (nested upward), if

A, C Apyq forn=1,2,3,.... For such a sequence, we define
lim A, = U3, Ay (1.2.16)

The sequence of sets A,, = {1,3,...,2n — 1} of Example 1.2.3 is such a sequence.
So in this case, we write lim, . A, = {1,3,5,...}. The sequence of sets {D,,} of
Example 1.2.4 is also a nondecreasing suquence of sets.

The second type of monotone sets consists of the nonincreasing, (nested
downward) sequences. A sequence of sets {A,} is nonincreasing, if A, D A, 41
for n =1,2,3,.... In this case, we define

lim A, =N, A, (1.2.17)
n—oo
The sequences of sets {B,,} and {C, } of Examples 1.2.3 and 1.2.4, respectively, are
examples of nonincreasing sequences of sets.

1.2.2 Set Functions

Many of the functions used in calculus and in this book are functions that map real
numbers into real numbers. We are concerned also with functions that map sets
into real numbers. Such functions are naturally called functions of a set or, more
simply, set functions. Next we give some examples of set functions and evaluate
them for certain simple sets.

Example 1.2.5. Let C = R, the set of real numbers. For a subset A in C, let Q(A)
be equal to the number of points in A that correspond to positive integers. Then
Q(A) is a set function of the set A. Thus, if A = {z:0 < z < 5}, then Q(4) = 4;
if A={-2,—1}, then Q(A) =0; and if A = {z : —c0 < x < 6}, then Q(A) =5. m

Example 1.2.6. Let C = R%. For a subset A of C, let Q(A) be the area of A
if A has a finite area; otherwise, let Q(A) be undefined. Thus, if A = {(x,y) :
22 +y? < 1}, then Q(A) = 7; if A = {(0,0),(1,1),(0,1)}, then Q(A) = 0; and if

A={(z,y):0<2,0<y,x+y <1}, then Q(A) = 5. m

Often our set functions are defined in terms of sums or integrals.! With this in
mind, we introduce the following notation. The symbol

/Af(:z:)dac

IPlease see Chapters 2 and 3 of Mathematical Comments, at site noted in the Preface, for a
review of sums and integrals




22 Probability and Distributions

means the ordinary (Riemann) integral of f(z) over a prescribed one-dimensional

set A and the symbol
//g(x,y) dady
A

means the Riemann integral of g(x,y) over a prescribed two-dimensional set A.
This notation can be extended to integrals over n dimensions. To be sure, unless
these sets A and these functions f(z) and g(z,y) are chosen with care, the integrals
frequently fail to exist. Similarly, the symbol

> f@)
A
means the sum extended over all € A and the symbol

3 gz
A

means the sum extended over all (x,y) € A. As with integration, this notation
extends to sums over n dimensions.

The first example is for a set function defined on sums involving a geometric
series. As pointed out in Example 2.3.1 of Mathematical Comments,? if |a] < 1,
then the following series converges to 1/(1 — a):

- 1
Y at=——, iffa] <1. (1.2.18)
= 1—a

Example 1.2.7. Let C be the set of all nonnegative integers and let A be a subset
of C. Define the set function @ by

Q) => (;)". (1.2.19)

neA

It follows from (1.2.18) that Q(C) = 3. If A = {1,2,3} then Q(A) = 38/27. Suppose
B =1{1,3,5,...} is the set of all odd positive integers. The computation of Q(B) is
given next. This derivation consists of rewriting the series so that (1.2.18) can be
applied. Frequently, we perform such derivations in this book.

o - S0

neB n=0

2o [\ 2 1 6
- Iy ,) _2_ 1 6

32+|\3 31— (4/9) 5

In the next example, the set function is defined in terms of an integral involving
the exponential function f(z) =e™*.

2Downloadable at site noted in the Preface
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Example 1.2.8. Let C be the interval of positive real numbers, i.e., C = (0,00).
Let A be a subset of C. Define the set function Q by

QA) = /A e *dx, (1.2.20)

provided the integral exists. The reader should work through the following integra-
tions:
3
=e ' —e°=0.318
1

3
Ql(1,3)] = / e Tdr=—e"
1
= ¢ °=0.007
5

Q[(5 and o0)] = /1 e Tdr=—e "
5 3 5
Q[(1,3) U [3,5)] :/1 e*wdx:/l e*wdx+/3 = dz = Q[(1,3)] + Q([3,5)]

Q(C):/Oooefzdmzl. [

Our final example, involves an n dimensional integral.

Example 1.2.9. Let C = R™. For A in C define the set function

Q(A):/-~-/d:r1dm2-~-dxn,
A

provided the integral exists. For example, if A = {(z1,22,...,2,) : 0 < z1 <
22,0 < x; <1, fori = 2,3, ..., n}, then upon expressing the multiple integral as
an iterated integral® we obtain

1 T n 1
= [ ([ ][

22| 1

?20.125.

If B={(z1,22,...,2p):0< 2y <9 <--- <z, <1}, then

an = [ (o] oo

where n! =n(n—1)---3-2-1. =

3For a discussion of multiple integrals in terms of iterated integrals, see Chapter 3 of Mathe-
matical Comments.
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EXERCISES

1.2.1. Find the union C7 U Cs and the intersection C; N Cy of the two sets C7 and
Cs, where

(@) C) = {2,3,5,7}, Cy = {1,3,5).

(b) C1={z:0<z<3},Cy={z:2<z<4}.

(c) Ci={(z,y): 0<2x<1,0<y<3},Co={(z,y): 0 <2 <22<y<3}
1.2.2. Find the complement C° of the set C' with respect to the space C if
(a) C={r:0<z<2},C={r:0<a< 2}

(b) C={(z,y,2) 1 2® +2y* + 322 <4}, C = {(2,y,2) : 2® + 2% + 327 < 4}.
(©) C={(@y) iz +y? <1}, C={(z.y): lol + Iyl < 1}.

1.2.3. List all possible arrangements of the four letters I, a, m, and b. Let C; be
the collection of the arrangements in which b is in the first position. Let Cs be the
collection of the arrangements in which a is in the third position. Find the union
and the intersection of C'y and Cs.

1.2.4. Concerning DeMorgan’s Laws (1.2.6) and (1.2.7):

(a) Use Venn diagrams to verify the laws.

(b) Show that the laws are true.

(c) Generalize the laws to countable unions and intersections.

1.2.5. By the use of Venn diagrams, in which the space C is the set of points
enclosed by a rectangle containing the circles C1, Cs, and C3, compare the following
sets. These laws are called the distributive laws.

(a) C1N(CaUCs) and (C; NCL) U (CLNCsy).
(b) Cl U (CQ n Cd) and (Cl @] 02) N (Cl @] Cg)

1.2.6. Show that the following sequences of sets, {C}}, are nondecreasing, (1.2.16),
then find limy_, o Ck.

(a) Cp={z:1/k<x<3-1/k}, k=1,2,3,....
() Cr ={(z,y): 1/k<z?+y?<4-1/k}, k=1,2,3,....

1.2.7. Show that the following sequences of sets, {C}}, are nonincreasing, (1.2.17),
then find limy_, o Ck.

(a) Cr={z:2-1/k<x <2}, k=1,2,3,....
(b) Cr={z:2<ax<2+1/k}, k=1,2,3,....
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(c) Cr={(z,y): 0<2?+y?> < 1/k}, k=1,2,3,....

1.2.8. For every one-dimensional set C, define the function Q (C) = > f(x),
where f (z) = (%) (%)x, x=0,1,2,..., zero elsewhere. If C1, = {z: 2 =0,2,4} and
Co={z:2=0,1,2,...}, find Q(C1) and Q (Cs) .

Hint: Recall that S, = a+ar +---+ar™ ! = a(1l —r")/(1 —r) and, hence, it
follows that lim, . S, = a/(1 — r) provided that |r| < 1.

1.2. 9 For every one-dimensional set C' for which the integral exists, let Q(C) =
Jo f () dz, where f(z) = 3(1—2?), =1 < x < 1, zero elsewhere; otherwise, let Q(C)
be undeﬁned. IfCy={z: -3 <z <3}, Co={0},and C3 = {z: -1 <z < 5},
find Q(Cl)7 Q(CQ)a and Q(CS)

1.2.10. For every two-dimensional set C contained in R2? for which the integral
exists, let Q(C) = [ [,(z ) dxdy. If Cy = {(=, y) -1<r<1,-1<y<1},
Cy = {(x,y) —1 <z=y< 1} and C3 = {(z,y) : 22 +y? < 1}, find Q(C1), Q(Cs),
and Q(C3).

1.2.11. Let C denote the set of points that are interior to, or on the boundary of, a
square with opposite vertices at the points (0, 0) and (1, 1). Let Q(C) = [, dyda.

(a) If C C Cis the set {(z,y) : 0 < y/2 <z < 1/2}, compute Q(C).
(b) If C C Cis the set {(z,y) : 0 <z <1,z +y =1}, compute Q(C).
(c) If C c Cistheset {(x,y) : 0<z/2 <y <z+1/4 <1}, compute Q(C).

1.2.12. Let C be the set of points interior to or on the boundary of a cube with
edge of length 1. Moreover, say that the cube is in the first octant with one vertex
at the point (0,0,0) and an opposite vertex at the point (1,1,1). Let Q(C) =
] [ dedydz.

(a) If C C Cis the set {(z,y,2) : 0 <z <y < z < 1}, compute Q(C).
(b) If C is the subset {(z,y,2) : 0 <2 =y = z < 1}, compute Q(C).

1.2.13. Let C denote the set {(z,y, 2) : % + y* + 2% < 1}. Using spherical coordi-

nates, evaluate
C) = /// Va2 +y? + 22 dedydz.
C

1.2.14. To join a certain club, a person must be either a statistician or a math-
ematician or both. Of the 35 members in this club, 25 are statisticians and 17
are mathematicians. How many persons in the club are both a statistician and a
mathematician?

1.2.15. After a hard-fought football game, it was reported that, of the 11 starting
players, 7 hurt a hip, 5 hurt an arm, 7 hurt a knee, 3 hurt both a hip and an arm,
3 hurt both a hip and a knee, 2 hurt both an arm and a knee, and 1 hurt all three.
Comment on the accuracy of the report.
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1.3 The Probability Set Function

Given an experiment, let C denote the sample space of all possible outcomes. As
discussed in Section 1.1, we are interested in assigning probabilities to events, i.e.,
subsets of C. What should be our collection of events? If C is a finite set, then we
could take the set of all subsets as this collection. For infinite sample spaces, though,
with assignment of probabilities in mind, this poses mathematical technicalities that
are better left to a course in probability theory. We assume that in all cases, the
collection of events is sufficiently rich to include all possible events of interest and is
closed under complements and countable unions of these events. Using DeMorgan’s
Laws, (1.2.6)—(1.2.7), the collection is then also closed under countable intersections.
We denote this collection of events by B. Technically, such a collection of events is
called a o-field of subsets.

Now that we have a sample space, C, and our collection of events, 3, we can define
the third component in our probability space, namely a probability set function. In
order to motivate its definition, we consider the relative frequency approach to
probability.

Remark 1.3.1. The definition of probability consists of three axioms which we
motivate by the following three intuitive properties of relative frequency. Let C be
a sample space and let A C C. Suppose we repeat the experiment N times. Then
the relative frequency of A is f4 = #{A}/N, where #{A} denotes the number of
times A occurred in the N repetitions. Note that f4 > 0 and f¢ = 1. These are
the first two properties. For the third, suppose that A; and Ay are disjoint events.
Then fa,ua, = fa, + fa,. These three properties of relative frequencies form the
axioms of a probability, except that the third axiom is in terms of countable unions.
As with the axioms of probability, the readers should check that the theorems we
prove below about probabilities agree with their intuition of relative frequency. m

Definition 1.3.1 (Probability). Let C be a sample space and let B be the set of
events. Let P be a real-valued function defined on B. Then P is a probability set
function if P satisfies the following three conditions:

1. P(A) >0, for all A € B.
2. P(C)=1.

3. If {A,} is a sequence of events in B and A, N A,, = ¢ for all m # n, then

() -

A collection of events whose members are pairwise disjoint, as in (3), is said to
be a mutually exclusive collection and its union is often referred to as a disjoint
union. The collection is further said to be exhaustive if the union of its events is
the sample space, in which case Y - | P(A,) = 1. We often say that a mutually
exclusive and exhaustive collection of events forms a partition of C.
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A probability set function tells us how the probability is distributed over the set
of events, B. In this sense we speak of a distribution of probability. We often drop
the word “set” and refer to P as a probability function.

The following theorems give us some other properties of a probability set func-
tion. In the statement of each of these theorems, P(A) is taken, tacitly, to be a
probability set function defined on the collection of events B of a sample space C.

Theorem 1.3.1. For each event A € B, P(A) =1— P(A°).

Proof: We have C = AU A® and AN A°¢ = ¢. Thus, from (2) and (3) of Definition
1.3.1, it follows that
1= P(A)+ P(A9),

which is the desired result. m

Theorem 1.3.2. The probability of the null set is zero; that is, P(¢) = 0.

Proof: In Theorem 1.3.1, take A = ¢ so that A° = C. Accordingly, we have
P(¢)=1-PC)=1-1=0

and the theorem is proved. m

Theorem 1.3.3. If A and B are events such that A C B, then P(A) < P(B).

Proof: Now B =AU (A°NB) and AN (A°NB) = ¢. Hence, from (3) of Definition
1.3.1,
P(B) =P(A) + P(A°N B).

From (1) of Definition 1.3.1, P(A°N B) > 0. Hence, P(B) > P(4). m

Theorem 1.3.4. For each A€ B, 0< P(A) < 1.
Proof: Since ¢ C A C C, we have by Theorem 1.3.3 that

P(¢) < P(A)<P({C) or 0<P(A) <1,
the desired result. m

Part (3) of the definition of probability says that P(AU B) = P(A) + P(B) if A
and B are disjoint, i.e., AN B = ¢ . The next theorem gives the rule for any two
events regardless if they are disjoint or not.

Theorem 1.3.5. If A and B are events in C, then
P(AUB)=P(A)+ P(B)—- P(AnB).

Proof: Each of the sets AU B and B can be represented, respectively, as a union of
nonintersecting sets as follows:

AUB=AU(A°NB) and B=(ANB)U(A°NB). (1.3.1)
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That these identities hold for all sets A and B follows from set theory. Also, the
Venn diagrams of Figure 1.3.1 offer a verification of them.
Thus, from (3) of Definition 1.3.1,

P(AUB)=P(A)+ P(A°N B)

and
P(B)=P(ANB)+ P(A°N B).

If the second of these equations is solved for P(A°N B) and this result is substituted
in the first equation, we obtain

P(AUB) = P(A) + P(B) — P(AN B).

This completes the proof. m

Panel (a) Panel (b)
A B A B
AUB=AU(A°NB) A=(ANB)U(ANB)

Figure 1.3.1: Venn diagrams depicting the two disjoint unions given in expression
(1.3.1). Panel (a) depicts the first disjoint union while Panel (b) shows the second
disjoint union.

Example 1.3.1. Let C denote the sample space of Example 1.1.2. Let the proba-
bility set function assign a probability of 3—16 to each of the 36 points in C; that is, the
dice are fair. If C7 = {(1,1),(2,1),(3,1),(4,1),(5,1)} and C> = {(1,2),(2,2),(3,2)},

then P(Cl) = %7 P(CQ) = %, P(Cl UCQ) = %, and P(Cl 002) =0.m

Example 1.3.2. Two coins are to be tossed and the outcome is the ordered pair
(face on the first coin, face on the second coin). Thus the sample space may be
represented as C = {(H, H), (H,T), (T, H),(T,T)}. Let the probability set function
assign a probability of 1 to each element of C. Let Cy = {(H,H),(H,T)} and
Cy = {(H,H),(T,H)}. Then P(C;) = P(Cs) = %, P(CiNnCy) = i, and, in
accordance with Theorem 1.3.5, P(Cy U Cq) = % +
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For a finite sample space, we can generate probabilities as follows. Let C =
{x1,22,...,2,} be a finite set of m elements. Let py,pa,...,pn be fractions such
that

0<p <lfori=1,2,....,mand " p;=1 (1.3.2)

Suppose we define P by

P(A) = Z p;, for all subsets A of C. (1.3.3)

;€A

Then P(A) > 0 and P(C) = 1. Further, it follows that P(AU B) = P(A) + P(B)
when AN B = ¢. Therefore, P is a probability on C. For illustration, each of the
following four assignments forms a probability on C = {1,2,...,6}. For each, we
also compute P(A) for the event A = {1,6}.

1 1
PL=p2=-=p6= P(A):g- (1.3.4)
p1=p2=01,p3=ps=ps =ps =02; P(A)=0.3.
7 7
p = — 1 =1,2,...,6; P(A)=—.
Di 217 1 ) &y 767 ( ) 21

3 3 3
pr=—p2=1——,p3=py=ps =ps =0.0; P(A)=—.
s s s

Note that the individual probabilities for the first probability set function,
(1.3.4), are the same. This is an example of the equilikely case which we now
formally define.

Definition 1.3.2 (Equilikely Case). Let C = {z1,x2,...,2m} be a finite sample
space. Let p; =1/m for alli=1,2,...,;m and for all subsets A of C define
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where #(A) denotes the number of elements in A. Then P is a probability on C and
it is refereed to as the equilikely case. m

Equilikely cases are frequently probability models of interest. Examples include:
the flip of a fair coin; five cards drawn from a well shuffled deck of 52 cards; a spin of
a fair spinner with the numbers 1 through 36 on it; and the upfaces of the roll of a
pair of balanced dice. For each of these experiments, as stated in the definition, we
only need to know the number of elements in an event to compute the probability
of that event. For example, a card player may be interested in the probability of
getting a pair (two of a kind) in a hand of five cards dealt from a well shuffled deck
of 52 cards. To compute this probability, we need to know the number of five card
hands and the number of such hands which contain a pair. Because the equilikely
case is often of interest, we next develop some counting rules which can be used to
compute the probabilities of events of interest.
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1.3.1 Counting Rules

We discuss three counting rules that are usually discussed in an elementary algebra
course.

The first rule is called the mn-rule (m times n-rule), which is also called the
multiplication rule. Let A = {z1,x2,...,2,} be a set of m elements and let
B = {y1,92,...,yn} be a set of n elements. Then there are mn ordered pairs,
(®i,95), 1 = 1,2,...,m and j = 1,2,...,n, of elements, the first from A and the
second from B. Informally, we often speak of ways, here. For example there are five
roads (ways) between cities I and II and there are ten roads (ways) between cities
IT and III. Hence, there are 5% 10 = 50 ways to get from city I to city III by going
from city I to city II and then from city II to city III. This rule extends immediately
to more than two sets. For instance, suppose in a certain state that driver license
plates have the pattern of three letters followed by three numbers. Then there are
262 % 103 possible license plates in this state.

Next, let A be a set with n elements. Suppose we are interested in k-tuples
whose components are elements of A. Then by the extended mn rule, there are
n-n---n =n” such k-tuples whose components are elements of A. Next, suppose
k < n and we are interested in k-tuples whose components are distinct (no repeats)
elements of A. There are n elements from which to choose for the first component,
n—1 for the second component, ..., n— (k—1) for the kth. Hence, by the mn rule,
there are n(n — 1)---(n — (k — 1)) such k-tuples with distinct elements. We call
each such k-tuple a permutation and use the symbol P}’ to denote the number of
k permutations taken from a set of n elements. This number of permutations, P}
is our second counting rule. We can rewrite it as

n!

P =nln—1)-(n—(k—1) = o=

(1.3.5)

Example 1.3.3 (Birthday Problem). Suppose there are n people in a room. As-
sume that n < 365 and that the people are unrelated in any way. Find the proba-
bility of the event A that at least 2 people have the same birthday. For convenience,
assign the numbers 1 though n to the people in the room. Then use n-tuples to
denote the birthdays of the first person through the nth person in the room. Using
the mn-rule, there are 365™ possible birthday n-tuples for these n people. This
is the number of elements in the sample space. Now assume that birthdays are
equilikely to occur on any of the 365 days. Hence, each of these n-tuples has prob-
ability 365~ ™. Notice that the complement of A is the event that all the birthdays
in the room are distinct; that is, the number of n-tuples in A€ is P35%. Thus, the
probability of A is
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365™

For instance, if n = 2 then P(A) = 1 — (365 * 364)/(3652) = 0.0027. This formula
is not easy to compute by hand. The following R function* computes the P(A) for
the input n and it can be downloaded at the sites mentioned in the Preface.

P(A) =1

4An R primer for the course is found in Appendix B.



